Comparisons of prototype- and exemplar-based neural network models of categorization using the GECLE framework
نویسنده
چکیده
In the present study, GECLE (Matsuka, 2003) was used as a general modeling framework to systematically compare the plausibility of two prominent assumptions about internal representations of neural network (NN) models of human category learning. In particular, exemplar-model friendly Medin and Schaffer’s 5/4 stimulus set (1978) was used for comparing prototypeand exemplar-based NN models. The results indicate that some prototype-based models performed as good as or better than an exemplar-based model in replicating the empirical classification profile. In addition, a phenomenon called A2 advantage (i.e., people tend to categorize the less “prototypical” stimulus A2 more accurately than more “prototypical” stimulus A1) reported in empirical studies (e.g., Medin & Schaffer 1978) was also successfully reproduced by these prototype-based NN models.
منابع مشابه
Daily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملEntrepreneurship policy and innovative indicators of industrial companies: Evaluation by MCDM and ANN Methods
The present paper presented a methodology for prioritizing the innovative and entrepreneurial indicators using Multi Criteria Decision Making (MCDM) and Artificial Neural Networks (ANNs), taking into account three individual, organizational and cultural dimensions simultaneously in decision making procedure. This methodology has two main advantages: first, the speed of operation in the accounti...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004